精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面ABCD是直角梯形,AD//BCECD的中点,

1)证明:平面PBD平面ABCD

2)若PC与平面ABCD所成的角为,试问“在侧面PCD内是否存在一点N,使得平面PCD?”若存在,求出点N到平面ABCD的距离;若不存在,请说明理由.

【答案】(1)见解析;(2)存在N点到平面ABCD的距离为

【解析】

1)通过证明,结合题目所给已知,由此证得平面,进而证得平面平面.

2)存在.通过(1)的结论,利用面面垂直的性质定理建立空间直角坐标系,假设存在符合题意的点,使平面,利用向量线性运算设出点坐标,结合求得点坐标,由此证得存在一点,使得平面.利用点到平面距离的向量求法,求得点到平面的距离.

1)证明:由四边形ABCD是直角梯形, AB=BC=2AD=2ABBC

可得DC=2,BCD=,从而BCD是等边三角形,BD=2,BD平分∠ADC.

ECD的中点,DE=AD=1,BDAE,

PBAE,PBBD=B,AE⊥平面PBD.AE平面ABCD平面PBD⊥平面ABCD.

(2) 存在.在平面PBD内作POBDO,连接OC,平面PBD⊥平面ABCD,平面PBD平面ABCD=BD,

PO⊥平面ABCDPCOPC与平面ABCD所成的角, 则∠PCO=

易得OP=OC=PB=PD,POBD,所以OBD的中点,OCBD.

OB,OC,OP所在的直线分别为x,y,z轴建立空间直角坐标系,B(1,0,0),C0,0D(-1,0,0),P0,0,)假设在侧面内存在点,使得平面成立,

,易得 ,满足题意,所以N点到平面ABCD的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于正三角形,挖去以三边中点为顶点的小正三角形,得到一个新的图形,这样的过程称为一次镂空操作,设是一个边长为1的正三角形,第一次镂空操作后得到图1,对剩下的3个小正三角形各进行一次镂空操作后得到图2,对剩下的小三角形重复进行上述操作,设是第次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),是前次挖去的所有三角形的面积之和,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,离心率等于,该椭圆的一个长轴端点恰好是抛物线的焦点.

1)求椭圆的方程;

2)已知直线与椭圆的两个交点记为,其中点在第一象限,点是椭圆上位于直线两侧的动点.运动时,满足,试问直线的斜率是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,已知GE分别为的中点,DF分别为线段ACAB上的动点(不包括端点),若,则线段DF的长度的平方取值范围为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的极值;

(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二十四节气是中国古代的一种指导农事的补充历法,是我国劳动人民长期经验的积累成果和智慧的结晶,被誉为“中国的第五大发明”.由于二十四节气对古时候农事的进行起着非常重要的指导作用,所以劳动人民编写了很多记忆节气的歌谣:春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒.《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影是按照等差数列的规律计算出来的,在下表中,冬至的晷影最长为1300寸,夏至的晷影最短为148寸,那么《易经》中所记录的清明的晷影长应为(

A.77.2B.72.4C.67.3D.62.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

1)若,且上是增函数,求的最小值;

2)设,若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧.,矩形的面积为S.

1)求矩形的面积S关于变量的函数关系式;

2)求为何值时,矩形的面积S最大?

查看答案和解析>>

同步练习册答案