精英家教网 > 高中数学 > 题目详情
10.若抛物线y2=2mx的准线方程为x=-3,则实数m的值为(  )
A.-6B.-$\frac{1}{6}$C.$\frac{1}{6}$D.6

分析 由抛物线的y2=2px的准线方程为x=-$\frac{p}{2}$,结合题意即可求得m的值.

解答 解:∵y2=2px的准线方程为x=-$\frac{p}{2}$,
∴由y2=2mx的准线方程为x=-3得:2m=-4×(-3)=12,
∴m=6.
故选D.

点评 本题考查抛物线的简单性质,掌握y2=2px的准线方程为x=-$\frac{p}{2}$是解决问题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0,且x+y+xy=1,则xy的最大值为(  )
A.1+$\sqrt{3}$B.$\sqrt{3}$-1C.4-2$\sqrt{3}$D.3-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在区间[0,π]上随机取一个数θ,则使$\sqrt{2}≤\sqrt{2}sinθ+\sqrt{2}cosθ≤2$成立的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=2与y轴的交点为P,与C的交点为Q,且|QF|=2|PQ|
(Ⅰ)求C的方程
(Ⅱ)判断C上是否存在两点M,N,使得M,N关于直线l:x+y-4=0对称,若存在,求出|MN|,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设数列{an}是公比为q(|q|>1)的等比数列,令bn=an+1(n∈N*),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则q=(  )
A.$\frac{3}{2}$B.$-\frac{4}{3}$C.$-\frac{3}{2}$D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=-2x的焦点为F,点A(x0,y0)是C上一点,若|AF|=$\frac{3}{2}$,则x0=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两点A(-1,5),B(3,7),圆C以线段AB为直径.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:x+y-4=0与圆C相交于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)计算a2,a3,a4,并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是(  )
①若m⊥α,n⊥m,则n∥α;       
②若α∥β,n⊥α,m∥β,则n⊥m;
③若m∥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n⊥β,m∥n,则α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

同步练习册答案