精英家教网 > 高中数学 > 题目详情
12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为(  )
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

分析 利用向量的加法,$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{AC}$+$\overrightarrow{CD}$,等式两边进行平方,求出BD的长度即可.

解答 解:∵∠ACD=90°,∴$\overrightarrow{AC}$$•\overrightarrow{CD}$=0.
同理$\overrightarrow{BA}$$•\overrightarrow{AC}$=0.
∵AB和CD成60°角,∴<$\overrightarrow{BA}$,$\overrightarrow{CD}$>=60°或120°.
∵$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{AC}$+$\overrightarrow{CD}$,
∴${\overrightarrow{BD}}^{2}$=3+2×1×1×cos<$\overrightarrow{BA}$,$\overrightarrow{CD}$>
∴|$\overrightarrow{BD}$|=2或$\sqrt{2}$,
故选B.

点评 本小题主要考查异面直线所成的角,以及数量积表示两个向量的夹角,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图的三视图所对应的立体图形可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的首项为a1=1,且满足an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,则此数列的第4项是(  )
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,BC=$\sqrt{5}$,AC=3,sinC=2sinA.
(1)求AB的值;
(2)求cos(A+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线y=kx+3与直线y=$\frac{1}{k}$x-5的交点在第一象限,则k的取值范围是0<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定义域.
(2)若f(a)=2,求a的值;
(3)求证:f($\frac{1}{x}$)=-f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x),当x>0有意义且满足条件f(2)=1,f(xy)=f(x)+f(y),且f(x)是增函数.
(1)求证:f(1)=0;
(2)若f(3)+f(4-8x)>2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正四棱台的上、下底面面积分别为4、16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥S-ABC中,AS=AB,CS=CB,点E,F,G分别是棱SA,SB,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

查看答案和解析>>

同步练习册答案