精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点M(2,0),离心率为$\frac{1}{2}$.A,B是椭圆C上两点,且直线OA,OB的斜率之积为-$\frac{3}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求$\frac{|BP|}{|BQ|}$的值.

分析 (Ⅰ)由题意得$\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,求出b,由此能求出椭圆C的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),求出p点的坐标,由B,Q,P三点共线,得$\overrightarrow{BP}=λ\overrightarrow{BQ}$,联立方程组求解得x3,y3,再结合已知条件能求出λ值,则$\frac{|BP|}{|BQ|}$的值可求.

解答 解:(Ⅰ)由题意得$\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,
解得$b=\sqrt{3}$.
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),
∵点P在直线AO上且满足|PO|=3|OA|,
∴P(3x1,3y1).
∵B,Q,P三点共线,
∴$\overrightarrow{BP}=λ\overrightarrow{BQ}$.
∴(3x1-x2,3y1-y2)=λ(x3-x2,y3-y2),
即$\left\{\begin{array}{l}{3{x}_{1}-{x}_{2}=λ({x}_{3}-{x}_{2})}\\{3{y}_{1}-{y}_{2}=λ({y}_{3}-{y}_{2})}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{3}=\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2}}\\{{y}_{3}=\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2}}\end{array}\right.$,
∵点Q在椭圆C上,∴$\frac{{{x}_{3}}^{2}}{4}+\frac{{{y}_{3}}^{2}}{3}=1$.
∴$\frac{(\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2})^{2}}{4}+\frac{(\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2})^{2}}{3}=1$.
即$\frac{9}{{λ}^{2}}(\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3})+(\frac{λ-1}{λ})^{2}(\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3})$$-\frac{6(λ-1)}{{λ}^{2}}(\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3})=1$,
∵A,B在椭圆C上,
∴$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1$,$\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1$.
∵直线OA,OB的斜率之积为$-\frac{3}{4}$,
∴$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}=-\frac{3}{4}$,即$\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3}=0$.
∴$\frac{9}{{λ}^{2}}+(\frac{λ-1}{λ})^{2}=1$,解得λ=5.
∴$\frac{|BP|}{|BQ|}$=|λ|=5.

点评 本题考查椭圆的标准方程,考查直线与椭圆位置关系的应用,训练了向量法在求解圆锥曲线问题中的应用,考查运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,椭圆上一点P满足|PF1|•|PF2|的最大值是2,O为坐标原点.
(I)求椭圆C1的方程;
(Ⅱ)若直线l与圆x2+y2=b2只有一个交点,并与椭圆C1交于不同的两点A、B,当$\frac{2}{3}$≤$\overrightarrow{OA}$•$\overrightarrow{OB}$≤$\frac{3}{4}$时,求△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A是函数$f(x)={log_{\frac{1}{2}}}({x-1})$的定义域,集合B是函数g(x)=2x,x∈[-1,2]的值域.
(1)求集合A;
(2)求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x•lnx+ax,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)在$[\frac{1}{e},e]$上的最小值;
(Ⅲ)若$g(x)=f(x)+\frac{1}{2}a{x^2}-(2a+1)x$,求证:a≥0是函数y=g(x)在x∈(1,2)时单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆心在直线2x-y-6=0上的圆C与y轴交于两点A(0,-5),B(0,-3),则圆C的方程是(  )
A.(x-1)2+(y+4)2=2B.(x+1)2+(y-4)2=2C.(x-1)2+(y-4)2=2D.(x+1)2+(y+4)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知不等式(m-n)2+(m-lnn+λ)2≥2对任意m∈R,n∈(0,+∞)恒成立,则实数λ的取值范围为λ≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在空间直角坐标中,点P(-1,-2,-3)到平面xOz的距离是(  )
A.1B.2C.3D.$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某汽车销售公司同时在甲、乙两地销售一种品牌车,利润(单位:万元)分别为${L_1}=-{x^2}+21x$和L2=2x(其中销售量单位:辆).若该公司在两地一共销售20辆,则能获得的最大利润为(  )
A.130万元B.130.25万元C.120万元D.100万元

查看答案和解析>>

同步练习册答案