精英家教网 > 高中数学 > 题目详情
11.下列区间中,函数f(x)=2x-5存在零点的区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 利用函数零点的判定定理即可得出.

解答 解:∵函数f(x)=2x-5在R上单调递增,∴函数f(x)至多有一个零点.
∵f(2)=22-5=-1<0,f(3)=23-5=3>0,∴f(2)f(3)<0,
由函数零点的判定定理可知:函数f(x)在区间(2,3)内存在零点,也是唯一的一个零点.
故选:D.

点评 正确理解函数零点的判定定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.y轴上一点P到直线l:3x-4y+10=0的距离为2,则P点坐标为(0,0)或(0,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程${x^2}+\frac{x}{tanθ}-\frac{1}{sinθ}=0$有两个不等实根a,b,则过点A(a,a2),B(b,b2)的直线与圆x2+y2=2的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.有四个命题:(1)若a>b,则ac2>bc2;(2)若a<b<0,则a2<b2;(3)若$\frac{1}{a}>1$,则a<1;(4)1<a<2且0<b<3,则-2<a-b<2.其中真命题的序号是(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.
(1)若4比x2-3x接近0,求x的取值范围;
(2)对于任意的两个不等正数a,b,求证:a+b比$\frac{b^2}{a}+\frac{a^2}{b}$接近$2\sqrt{ab}$;
(3)若对于任意的非零实数x,实数a比$x+\frac{4}{x}$接近-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{{p{x^2}+1}}{x}$的图象经过点$({2,\frac{5}{2}})$,.
(1)求函数f(x)的解析式;
(2)写出函数f(x)的定义域,并判断其奇偶性;
(3)当t>$\frac{1}{2}$时,求函数f(x)在区间$[{\frac{1}{2},t}]$上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知M为椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1上的一点.若点M的横坐标为2,则其纵坐标为$±\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项均为正数的等比数列{an}中,a2=2,a8=a6+2a4,则a6的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:A${\;}_{2x+1}^{4}$=140A${\;}_{x}^{3}$.

查看答案和解析>>

同步练习册答案