精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=(

A.8
B.9
C.10
D.11

【答案】A
【解析】解:由题意可知直线CE与正方体的上底面平行在正方体的下底面上,与正方体的四个侧面不平行,所以m=4,
直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8.
故选A.
【考点精析】解答此题的关键在于理解平面的基本性质及推论的相关知识,掌握如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在区间[﹣3,3]上随机取一个数x使得|x+1|﹣|x﹣2|≥1的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是( )

A. 若所有样本点都在上,则变量间的相关系数为1

B. 至少有一个样本点落在回归直线

C. 对所有的预报变量的值一定与有误差

D. 斜率,则变量正相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(1+x)e2x , g(x)=ax+ +1+2xcosx,当x∈[0,1]时,
(1)求证:
(2)若f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1 , l2之间,l∥l1 , l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧 的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2 , 则函数y=f(x)的图象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数

(1)时,求不等式的解集;

(2) |的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,是棱的中点.

(1)证明:平面

(2)若是棱的中点,求三棱锥的体积与三棱柱的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于函数的判断正确的是(  )

的解集是

极小值,是极大值;

没有最小值,也没有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

同步练习册答案