【题目】在平面直角坐标系中,点满足方程.
(1)求点的轨迹的方程;
(2)作曲线关于轴对称的曲线,记为,在曲线上任取一点,过点作曲线的切线,若切线与曲线交于,两点,过点,分别作曲线的切线,,证明:,的交点必在曲线上.
【答案】(1) ;(2)证明见解析
【解析】
(1)平方化简,即可求解;
(2)根据导数的几何意义求出切线l的方程,与曲线方程联立,由韦达定理,确定两交点A,B坐标关系,再利用导数的几何意义,求出切线,的方程,并联立求出交点坐标,再证明满足轨迹的方程即可.
(1)由,
两边平方并化简,得,即,
所以点M的轨迹C的方程为.
(2)依题可设点,,
曲线C切于点P的切线l的斜率为,
切线l的方程为,
整理得
依题可知曲线,
联立方程组,,
设,,所以,.(*)
设曲线上点处的切线斜率为,
切线方程为,整理得,
同理可得曲线上点处的切线方程为,
联立方程组,,
又由(*)式得,则,的交点坐标为,
满足曲线的方程.
即,的交点必在曲线上.
科目:高中数学 来源: 题型:
【题目】如图,已知边长为2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,,.
(1)求证:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线,(为长半轴,为半焦距)上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N.求证:线段ON的长为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com