【题目】已知函数
(1)若对任意,恒成立,求的值;
(2)设,若没有零点,求实数的取值范围.
【答案】(1) (2)
【解析】
(1)对函数求导得 ,通过单调性可知当时,函数取得极大值;若对任意,在上恒成立,
当且仅当,,即恒成立,得即,构造函数,通过单调性求的值.
(2),求导得
构造函数,则在区间内存在唯一零点,通过单调性求得的取值范围.
解:(1),
当时,,在上是增函数;
当时,在上是减函数;
故当时,函数取得极大值.
若对任意,在上恒成立,
当且仅当,,即恒成立,
得即.
设,则.
当时,是增函数;
当时,是减函数,
所以当时,取得极大值,得.
所以,可得.
(2),所以
,
设,则在上是增函数,
又,
所以在区间内存在唯一零点,
即.
当时,,即;
当时,,即,所以在上是减函数,
在上是增函数,所以.
因为没有零点,所以,
即,所以的取值范围是.
科目:高中数学 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1,an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是( )
A. 8B. 9C. 10D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P—ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.点E,F,O分别为线段PA,PB,AC的中点,点G是线段CO的中点.
(1)求证:FG∥平面EBO;
(2)求证:PA⊥BE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左右焦点分别为,线段,的中点分别为,且是面积为4的直角三角形,过作直线交椭圆于两点,使,则直线的斜率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的方程为,若抛物线过点,且以圆0的切线为准线,为抛物线的焦点,点的轨迹为曲线.
(1)求曲线的方程;
(2)过点作直线交曲线与两点,关于轴对称,请问:直线是否过轴上的定点,如果不过请说明理由,如果过定点,请求出定点的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,边长为a的空间四边形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,则异面直线AD与BC所成角的大小为( )
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员名(且),调整后研发人员的年人均投入增加%,技术人员的年人均投入调整为万元.
(1)要使这名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;
(2)是否存在这样的实数,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com