精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的中心为O,过其右焦点F的直线与两条渐近线交于A、B两点,
FA

BF
同向,且FA⊥OA,若|OA|+|OB|=2|AB|,则此双曲线的离心率为(  )
A、
3
B、
6
2
C、
10
3
D、
5
2
考点:双曲线的简单性质
专题:计算题,平面向量及应用,圆锥曲线的定义、性质与方程
分析:由勾股定理、|
OA
|+|
OB
|=2|
AB
|,得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.
解答: 解:由FA⊥OA知,|OA|2+|AB|2=|OB|2
又|
OA
|+|
OB
|=2|
AB
|,
所以|OA|:|AB|:|OB|=3:4:5,
于是tan∠AOB=
4
3

因为
FA
BF
同向,
所以过F作直线l1的垂线与双曲线相交于同一支.
而双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线方程y=±
b
a
x,故
2b
a
1-
b2
a2
=
4
3

解得a=2b,
故双曲线的离心率e=
c
a
=
a2+b2
a
=
5
2

故选:D.
点评:本题考查了双曲线的简单性质,确定tan∠AOB=
4
3
,联想到对应的是渐近线的夹角的正切值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x2-x)f(x)>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
学院机械工程学院海洋学院医学院经济学院
人数4646
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图AC是圆O的直径,B、D是圆O上两点,AC=2BC=2CD=2,PA⊥圆O所在的平面,PA=
3
,点M在线段BP上,且BM=
1
3
BP.
(1)求证:CM∥平面PAD;
(2)求异面直线BP与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
2x2+m
在(
1
2
,f(
1
2
))处的切线方程为8x-9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若关于x的不等式f(x)≤ax+
8
9
在[
1
2
,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+ϕ) (ω>0,|ϕ|<
π
2
)有一个零点x0=-
2
3
,且其图象过点A(
7
3
,1),记函数f(x)的最小正周期为T,
(1)若f′(x0)<0,试求T的最大值及T取最大值时相应的函数解析式、
(2)若将所有满足题条件的ω值按从小到大的顺序排列,构成数列{ωn},试求数列{ωn}的前项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

任取实数a,b∈[-1,1],则a,b满足b≥a2的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(-1,3),
b
=(1,t),若(
a
-2
b
)⊥
a
,则|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,三角形的面积为
3
,又
cosC
cosB
=
c
2a-b
,则
1
b+1
+
9
a+9
的最大值为
 

查看答案和解析>>

同步练习册答案