精英家教网 > 高中数学 > 题目详情
(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.
(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)异面直线AC1与B1C所成角的余弦值为
(I)由题目条件可知,又因为,D为AB的中点,所以,所以.
(II)连接BC1交B1C交于O点,连接OD,则OD//AC1,所以平面.
(III)在(I)的基础上可知就是异面直线所成角,然后解三角形求角即可.
(Ⅰ)∵直三棱柱ABC—A1B1C1
,
…………1
,…………2
………………………3
……………………4
(Ⅱ)设CB1与C1B的交点为E,连结DE,…………….5
∵D是AB的中点,E是BC1的中点,
∴DE//AC1,…………………………………………7
∵DE平面CDB1,AC1平面CDB1,………….8
∴AC1//平面CDB1……………………………………9
(Ⅲ)∵DE//AC1,∴∠CED或其补角为AC1与B1C所成的角……..10
在△CED中,ED=-------------12

∴异面直线AC1与B1C所成角的余弦值为………………………14
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知如图,平行四边形中,,正方形所在平面与平面垂直,分别是的中点。

⑴求证:平面
⑵求平面与平面所成的二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,为空间四点.在中,.等边三角形为轴运动.
(1)当平面平面时,求
(2)当转动时,证明总有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在直三棱柱中,,点的中点,

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中,真命题是           (将真命题前面的编号填写在横线上).
①已知平面和直线,若,则
②已知平面和两异面直线,若,则
③已知平面和直线,若,则
④已知平面和直线,若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三条不同的直线,是两个不同的平面,则能使成立是(  )
A.        B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.

查看答案和解析>>

同步练习册答案