精英家教网 > 高中数学 > 题目详情

设{a}是正数数列,其前n项和Sn满足Sn=数学公式(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=数学公式,Tn是数列{bn}的前n项和,求数学公式Tn

解:(1)由a1=S1=,及an>0,得a1=3

∴当n≥2时,
∴2(an+an-1)=(an+an-1)(an-an-1)∵an+an-1>0∴an-an-1=2,
∴{an}是以3为首项,2为公差的等差数列,∴an=2n+1
(2)由(1)知Sn=n(n+2)∴
Tn=b1+b2+…+bn

==

,得
,得

因而n满足的最小整数(14分)
分析:(1)由题设条件得a1=3,,由此能求出数列{an}的通项公式.
(2)由(1)知Sn=n(n+2),所以,再用裂项求和法求出数列{bn}的前n项和Tn,由此能求出Tn
点评:本题考查数列的极限和应用,解题时要认真审题,仔细解答,注意裂项求和的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{a}是正数数列,其前n项和Sn满足Sn=
1
4
(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=
1
sn
,Tn是数列{bn}的前n项和,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源:宣武区一模 题型:解答题

设{a}是正数数列,其前n项和Sn满足Sn=
1
4
(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=
1
sn
,Tn是数列{bn}的前n项和,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市宣武区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

设{a}是正数数列,其前n项和Sn满足Sn=(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:2009年北京市宣武区高考数学一模试卷(理科)(解析版) 题型:解答题

设{a}是正数数列,其前n项和Sn满足Sn=(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案