精英家教网 > 高中数学 > 题目详情

如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记

(1)问当为多少时,所建造的三角形露天活动室的面积最大?
(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。

(1)时,面积最大;(2)养殖场建造成扇形时面积能比(1)中的最大面积更大

解析试题分析:(1)由余弦定理可得间的关系式然后用重要不等式可得的最大值,从而求得三角形面积的最大值 也可以用正弦定理将面积用角表示出来,然后用三角函数求其最大值 (2)将扇形的面积求出来,再与(1)中的最大面积比较即可
试题解析:(1)解法一:在中,由余弦定理:  2分

                           4分
                     6分
 
此时     8分
解法二:在中,由正弦定理:  2分
化简得:   4分
所以
            6分



所以当时,   8分
法若饲养场建造成扇形时,由60=
所以扇形的面积为                        10分
因为
所以养殖场建造成扇形时面积能比(1)中的最大面积更大                            12分
考点:1、正弦定理与余弦定理;2、三角恒等变换;3、扇形的面积;4、比较大小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC所对的边分别是abc,设平面向量e1e2,且e1e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边为且;
(Ⅰ)求的值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,BC=a,AC=b,a、b是方程的两个根,且,求△ABC的面积及AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.

(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,a,b,c分别为内角A,B,C的对边,已知:的外接圆的半径为.
(1)求角C的大小;
(2)求的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中的内角所对的边分别为,若,且.
(Ⅰ)求角的大小;
(Ⅱ)求函数的取值范围.

查看答案和解析>>

同步练习册答案