如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,
(1)问当为多少时,所建造的三角形露天活动室的面积最大?
(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。
(1)时,面积最大;(2)养殖场建造成扇形时面积能比(1)中的最大面积更大
解析试题分析:(1)由余弦定理可得间的关系式然后用重要不等式可得的最大值,从而求得三角形面积的最大值 也可以用正弦定理将面积用角表示出来,然后用三角函数求其最大值 (2)将扇形的面积求出来,再与(1)中的最大面积比较即可
试题解析:(1)解法一:在中,由余弦定理: 2分
4分
6分
此时 8分
解法二:在中,由正弦定理: 2分
化简得:, 4分
所以
6分
即
所以当即时, 8分
法若饲养场建造成扇形时,由60=得
所以扇形的面积为 10分
因为
所以养殖场建造成扇形时面积能比(1)中的最大面积更大 12分
考点:1、正弦定理与余弦定理;2、三角恒等变换;3、扇形的面积;4、比较大小
科目:高中数学 来源: 题型:解答题
在△ABC中,角A,B,C所对的边分别是a,b,c,设平面向量e1=,e2=,且e1⊥e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周长L的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.
(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com