精英家教网 > 高中数学 > 题目详情
(A)4-2矩阵与变换
已知二阶矩阵M的特征值是λ1=1,λ2=2,属于λ1的一个特征向量是e1=
1
1
,属于λ2的一个特征向量是e2=
-1
2
,点A对应的列向量是a=
1
4

(Ⅰ)设a=me1+ne2,求实数m,n的值.
(Ⅱ)求点A在M5作用下的点的坐标.

(B)4-2极坐标与参数方程
已知直线l的极坐标方程为ρsin(θ-
π
3
)=3
,曲线C的参数方程为
x=cosθ
y=3sinθ
,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.
分析:(A):(Ⅰ)把两个特征向量代入a=me1+ne2,让其等于
.
1 
4 
.
,得到关于m与n的二元一次方程组,求出方程组的解集即可得到m与n的值;
(Ⅱ)根据二阶矩阵的线性变换,得到M5a=M5(2e1+e2)=2M5e1+M5e2=2λ15e125e2=2e1+25e2,分别把两个特征向量代入即可求出点A在M5作用下的点的坐标;
(B):把极坐标方程利用两角差的正弦函数公式及特殊角的三角函数值化简后,根据ρsinθ=y,ρcosθ=x,把极坐标方程化为普通方程得到直线l的方程,设出曲线C参数方程一点坐标,利用点到直线的距离公式表示出P到直线l的距离d,利用两角和的余弦函数公式化为一个角的余弦函数,根据余弦函数的值域即可求出d的最大值.
解答:(A)4-2矩阵与变换
解:(Ⅰ)由a=me1+ne2得:
1
4
=m
1
1
+n
-1
2
,即
1=m-n
4=m+2n
?
m=2
n=1

(Ⅱ)二阶矩阵M对应的变换是线性变换
所以M5a=M5(2e1+e2)=2M5e1+M5e2
=2λ15e125e2=2e1+25e2
=2
1
1
+25=
2-25
2+26
=
-30
66

所以点A在M5作用下的点的坐标(-30,66).
(B)4-2极坐标与参数方程
解:由ρsin(θ-
π
3
)=3
,得:ρ(
1
2
sinθ-
3
2
cosθ)=3
,∴y-
3
x=6
,即:
3
x-y+6=0

又曲线C的参数方程是
x=cosθ
y=3sinθ
,设点P坐标为(cosθ,3sinθ),
则点P到直线l的距离是d=
|
3
cosθ-3sinθ+6|
(
3
)
2
+12
=
|
3
cosθ-3sinθ+6|
2
=
|2
3
cos(θ+
π
3
)+6|
2
|2
3
+6|
2
=
3
+3

所以,P到直线l的距离的最大值为
3
+3
点评:此题考查了二阶矩阵的线性表示,会将简单的极坐标方程化为普通方程,灵活运用点到直线的距离公式化简求值,灵活运用两角和与差的正弦、余弦函数公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州三中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为为参数),C2的参数方程为为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若的定义域为R,求实数m的取值范围.

查看答案和解析>>

同步练习册答案