精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间.

分析 (Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(Ⅱ)利用余弦函数的单调性,求得f(x)的单调区间.

解答 解:(Ⅰ)根据函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,
可得A=2,$\frac{3T}{4}$=$\frac{3}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$+$\frac{π}{3}$,∴ω=2.
再根据五点法作图,可得2•$\frac{5π}{12}$+φ=0,∴φ=-$\frac{5π}{6}$,∴f(x)=2cos(2x-$\frac{5π}{6}$).
(Ⅱ)令2kπ≤2x-$\frac{5π}{6}$≤2kπ+π,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,
可得函数的减区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
令2kπ-π≤2x-$\frac{5π}{6}$≤2kπ,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y2=4x,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且PQ⊥PR.
(Ⅰ)求过点P,且与C恰有一个公共点的直线l的方程;
(Ⅱ)求证:QP过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin40°(tan190°-$\sqrt{3}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设有一条光线从P(-2,4$\sqrt{3}$)射出,并且经x轴上一点Q(2,0)反射
(Ⅰ)求入射光线和反射光线所在的直线方程(分别记为l1,l2
(Ⅱ)设动直线l:x=my-2$\sqrt{3}$,当点M(0,-6)到l的距离最大时,求l,l1,l2所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sin($\frac{π}{2}$x+φ)(|φ|<$\frac{π}{2}$)的部分图象如图所示,其中P是图象的最高点,A、B是图象与x轴的交点,则tan∠APB=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=sin(2x+$\frac{π}{3}$),则下列关于函数f(x)的说法中正确的是(  )
A.f(x)是偶函数B.f(x)最小正周期为2π
C.f(x)图线关于直线点x=-$\frac{π}{6}$对称D.f(x)图象关于点(-$\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了得到函数y=2sin(2x-$\frac{π}{3}$)的图象,只需把函数y=2sinx(2x+$\frac{π}{6}$)的图象上所有的点(  )
A.向左平行平移$\frac{π}{2}$个单位长度B.向右平行平移$\frac{π}{4}$个单位长度
C.向右平行平移$\frac{π}{2}$个单位长度D.向左平行平移$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC,O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC;
(Ⅱ)若AC=$\sqrt{3}$.AB=2时,求三棱锥O-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=x3+(a-1)x2是奇函数,则不等式f(ax)>f(a-x)的解集是{x|x>$\frac{1}{2}$}.

查看答案和解析>>

同步练习册答案