精英家教网 > 高中数学 > 题目详情
1.函数f(x)=(a2-3)x对于x<0时,总有f(x)>1,则a的取值范围是(-2,$\sqrt{3}$)∪($\sqrt{3}$,2).

分析 根据题意指数函数y=ax的图象与性质得出关于底数的不等关系,再解此不等式即可求得实数a的取值范围.

解答 解:∵当x<0时,函数y=(a2-3)x的值总大于1,
根据指数函数的性质得:0<a2-3<1,
解得-2<a<-$\sqrt{3}$,或$\sqrt{3}$<a<2.
故a的取值范围为(-2,$\sqrt{3}$)∪($\sqrt{3}$,2),
故答案为:(-2,$\sqrt{3}$)∪($\sqrt{3}$,2).

点评 本题主要考查指数函数的图象与性质、不等式的解法.属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若关于x的不等式x2-mx+m2-4m<0的解集包含区间(0,2)时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=9-ax2(a>0)在[0,3]上的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(3,2),B($\sqrt{3}$+1,1),过点P(1,0)的直线L与线段AB有公共点,
(1)求直线L的斜率k的取值范围.
(2)求直线L的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数图象的顶点坐标是(1,4),又图象过点A(-1,0),
(1)求这个函数的解析式;
(2)若x∈[-2,2]时,求函数的最值;
(3)若f(x)与两坐标轴的交点分别为A、B、C,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)的定义域为[-2,2],则函数g(x)=$\frac{f(x-1)}{\sqrt{2x+1}}$,则g(x)的定义域为(  )
A.(-$\frac{1}{2}$,3]B.(-1,+∞)C.(-$\frac{1}{2}$,0)∪(0,3)D.(-$\frac{1}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角α的顶点在原点,角α的始边与x轴正半轴重合,点M(-1,2)是α的终边上的一点,若β是第二象限角,且sinβ=$\frac{3}{5}$,求sin(α+β),tan(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(2-3x)+3f(3x-2)=5x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用充分条件叙述下列命题:
(1)若x2+y2=0,则x+y=x2+y2
(2)若x>7,则x>3;
(3)若我是中职学生,则我是高中生;
(4)若a∈N,则a∈R.

查看答案和解析>>

同步练习册答案