精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<….设集合Am={n|an≤m,m∈N*),将集合Am中的元素的最大值记为bm,即bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.

例如,数列1,3,5的伴随数列为1,1,2,2,3.

(I)若数列{an}的伴随数列为1,1,2,2,2,3,3,3,3……,请写出数列{an};

(II)设an=4n-1,求数列{an}的伴随数列{bn}的前50项之和;

(III)若数列{an}的前n项和(其中c为常数),求数列{an}的伴随数列{bm}的前m项和Tm.

【答案】I136 IITm=

【解析】试题分析:(1直接根据伴随数列的定义可得出数列的前三项;(2时, ,时, 时, ,(3)讨论两种情况时; .

试题解析:(I136 II)由an=4n-1≤m,得n≤l+log4mm∈N*

1≤m≤3m∈N*时,b1=b2=b3=1

4≤m≤15m∈N*时,b4=b5=…=b15=2

16≤m≤50m∈N*时,b16=b17=…=b50=3

∴b1+b2+…+b50=1×3+2×12+3×35=132

III∵a1=S1=1+c=1 ∴c=0

n≥2时,an=Sn-Sn-1=2n-1 ∴an=2n-1n∈N*

an=2n-l≤m得,n≤mN*

因为使得an≤m成立的n的最大值为bm

所以b1=b2=1b3=b4=2b2t-1=b2t=tt∈N*

m=2t-1t∈N*)时;

Tm=2··t-1+t=t2=m+12

m=2t t∈N*)时;

Tm=2··t=t2+t=mm+2

所以Tm=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)若函数上单调递减,试求的取值范围;

(Ⅲ)若函数的最小值为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求在[0,2]上的最值;

(2)如果对于任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且,若的面积为,则的最小值为( )

A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在杨辉三角形中,从第2行开始,除1以外,其它每一个数值是它上面的两个数值之和,该三角形数阵开头几行如图所示.

(1)在杨辉三角形中是否存在某一行,使该行中三个相邻的数之比是3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;

(2)已知n,r为正整数,且n≥r+3.求证:任何四个相邻的组合数C,C,C,C不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度 (单位:),对某种鸡的时段产蛋量(单位:) 和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

(3)已知时段投入成本的关系为,当时段控制温度为时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为,画面的上、下各留空白,左、右各留空白.

(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?

(2)设画面的高与宽的比为,且,求为何值时,宣传画所用纸张面积最小?

查看答案和解析>>

同步练习册答案