精英家教网 > 高中数学 > 题目详情

【题目】在R上定义运算:ab=ab+2a+b,则满足x(x﹣2)<0的实数x的取值范围为(
A.(0,2)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣1,2)

【答案】B
【解析】解:∵x⊙(x﹣2)=x(x﹣2)+2x+x﹣2<0,
∴化简得x2+x﹣2<0即(x﹣1)(x+2)<0,
得到x﹣1<0且x+2>0①或x﹣1>0且x+2<0②,解出①得﹣2<x<1;解出②得x>1且x<﹣2无解.
∴﹣2<x<1.
故选B
【考点精析】通过灵活运用解一元二次不等式,掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+6y=0,则圆心P及半径r分别为(
A.圆心P(1,3),半径r=10
B.圆心P(1,3),半径
C.圆心P(1,﹣3),半径r=10
D.圆心P(1,﹣3),半径

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形, ,点的中点.

(1)证明:

(2)设点在线段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且

(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;

(2)求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求实数a的值及f(x)的极值;
(Ⅱ)是否存在区间(t,t+ )(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;
(Ⅲ)如果对任意的 ,有|f(x1)﹣f(x2)|≥k| |,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m的值为(
A.16
B.12
C.32
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )为定义域上的增函数, 是函数的导数,且的最小值小于等于0.

(1)求的值;

(2)设函数,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C1 和圆C2:x2+y2=b2 , 已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.
(I)求椭圆C1的方程;
(Ⅱ)求△EPM面积最大时直线l的方程.

查看答案和解析>>

同步练习册答案