精英家教网 > 高中数学 > 题目详情

【题目】为了调查患胃病是否与生活规律有关,在某地对岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.

(1)根据以上数据列出列联表;

(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”

附:,其中.

【答案】(1)见解析;(2)见解析

【解析】分析:(1)由已知作出列联表即可;
(2)由列联表,结合计算公式,求得=,,由此判断出两个量之间的关系.

详解:

(1)由已知可列2×2列联表:

患胃病

未患胃病

总计

生活规律

20

200

220

生活不规律

60

260

320

总计

80

460

540

(2)根据列联表中的数据,得K2的观测值

因为9.638>6.635,因此在犯错误的概率不超过0.01的前提下认为“40岁以上的人患胃病与否和生活规律有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为 ,数据落在(2,10)内的概率约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某中学举行了“我爱国学,传诵经典”考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.

(1)若该所中学共有2000名学生,试利用样本估计全校这次考试中优秀生人数;

(2)(i)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间的中点值作代表);

(ii)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人赠送一套国学经典学籍,试求恰好抽中2名优秀生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=2,点MN分别是边ABCD上的点,且MNBC.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).

(1)求证:平面CND⊥平面AMND

(2)求直线MC与平面AMND所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为坐标原点,离心率,点在双曲线上.

(1)求双曲线的方程;

(2)若直线与双曲线交于两点,且.求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为圆

(1)若直线过点,且被圆截得的弦长为,求直线的方程;

(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。现从符合条件的志愿者中 随机抽取名按年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

(1)若从第组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第组各抽取多少名志愿者?

(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l经过点A(﹣1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,则a2016=(
A.1
B.﹣1
C.2+
D.2﹣

查看答案和解析>>

同步练习册答案