精英家教网 > 高中数学 > 题目详情

【题目】供电部门对某社区位居民201611月份人均用电情况进行统计后,按人均用电量分为 五组,整理得到如下的频率分布直方图,则下列说法错误的是(

A. 11月份人均用电量人数最多的一组有

B. 11月份人均用电量不低于度的有

C. 11月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

【答案】C

【解析】根据频率分布直方图知,11月份人均用电量人数最多的一组是[1020),有1000×004×10=400人,A正确;11月份人均用电量不低于20度的频率是(003+001+001×10=05,有1000×05=500人,B正确;11月份人均用电量为5×0.1+15×0.4+25×0.3+35×0.1+45×0.1=22C错误;在这1000位居民中任选1位协助收费,用电量在[3040)一组的频率为0.1,估计所求的概率为D正确.故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,公园有一块边长为2的等边ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,DAB上,EAC.

1)设ADxx≥1),EDy,求用x表示y的函数关系式;

2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:

并且,年龄在的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.

(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;

(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的满足,前项的和为,且.

(1)求的值;

(2)设,证明:数列是等差数列;

(3)设,若,求对所有的正整数都有成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, .

1)求函数的增区间;

2)若函数有两个零点,求实数的取值范围,并说明理由;

3)设正实数 满足,当时,求证:对任意的两个正实数 总有.

(参考求导公式: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形中,M为DC的中点.沿折起,使得平面平面.

1求证:

2若点是线段上的一动点,问点在何位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物(下简称 作物)的生长状况,用简单随机抽样方法从该市调查了 500 处 作物种植点,其生长状况如表:

其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.

(1)估计该市空气质量差的作物种植点中,不绝收的种植点所占的比例;

(2)能否有 99%的把握认为“该市作物的种植点是否绝收与所在地域有关”?

(3)根据(2)的结论,能否提供更好的调查方法来估计该市作物的种植点中,绝收种植点的比例?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,讨论的单调性;

(2)若,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,圆 ,过的动直线两点,线段中点为 为坐标原点。

1)求点的轨迹方程;

2)当时,求直线的方程以及面积。

查看答案和解析>>

同步练习册答案