精英家教网 > 高中数学 > 题目详情

如图,设F是图中边长为1的正方形区域,E是分别以B,D为圆心,1为半径的圆的公共部分,向F中随机投一点,则该点落入E中的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:由题意知本题是一个几何概型,试验发生包含的所有事件是矩形面积S=1×2,而空白区域可以看作是由二部分组成,每一部分是由边长为1的正方形面积减去半径为1的四分之一圆的面积得到,最后利用几何概型的概率公式解之即可.
解答:由题意知本题是一个几何概型,
∵试验发生包含的所有事件是矩形面积S=1×2=2,
空白区域的面积是2(1-π)=2-π,
则区域E的面积为1-(2-π)=-1
∴由几何概型公式得到P==
故选D.
点评:本题主要考查了几何概型,解题的关键求阴影部分的面积,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:P-ABC为正四面体;
(2)若PD=PA=
12
求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设F是图中边长为1的正方形区域,E是分别以B,D为圆心,1为半径的圆的公共部分,向F中随机投一点,则该点落入E中的概率为(  )

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱锥P-ABC的棱长和相等。(棱长和是指多面体中所有棱的长度之和)

(1)证明:P-ABC为正四面体;
(2)若PD=PA,求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2004年上海市高考数学试卷(文科)(解析版) 题型:解答题

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:P-ABC为正四面体;
(2)若PD=PA=求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案