分析 (1)通过设直线l的方程为y=kx+b,并代入a1=1、a2=3计算出k、b的值,进而计算可得结论;
(2)通过(1)可知an=2n-1,利用bn=2n,可得数列{Cn}的通项公式,进而利用等差数列、等比数列的求和公式计算即得结论;
(3)通过设Pn(xn,yn)(n∈N*),利用$\overrightarrow{{P}_{n}{P}_{n+1}}$=(an,bn)(n∈N*)及累加法计算即得结论.
解答 解:(1)设直线l的方程为:y=kx+b,
∵a1=1,a2=3,
∴$\left\{\begin{array}{l}{1=k+b}\\{3=2k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=2}\\{b=-1}\end{array}\right.$,
∴直线l的方程为:y=2x-1;
(2)由(1)可知:an=2n-1,
又∵bn=2n,
∴Cn=$\left\{\begin{array}{l}{2n-1,}&{1≤n≤4}\\{{2}^{n},}&{n≥5}\end{array}\right.$,
∴Tn=$\left\{\begin{array}{l}{{n}^{2},}&{1≤n≤4}\\{14+{2}^{n-3},}&{n≥5}\end{array}\right.$;
(3)设Pn(xn,yn)(n∈N*),
∵$\overrightarrow{{P}_{n}{P}_{n+1}}$=(an,bn)(n∈N*),
∴$\left\{\begin{array}{l}{{x}_{n}-{x}_{n-1}={a}_{n-1}}\\{{y}_{n}-{y}_{n-1}={b}_{n-1}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{n-1}-{x}_{n-2}={a}_{n-2}}\\{{y}_{n-1}-{y}_{n-2}={b}_{n-2}}\end{array}\right.$,…,$\left\{\begin{array}{l}{{x}_{2}-{x}_{1}={a}_{1}}\\{{y}_{2}-{y}_{1}={b}_{1}}\end{array}\right.$,
分别并项相加可得:xn=n2-2n+2,yn=2n-1,
又∵点P1与A1重合,
∴xn=n2-2n+2,yn=2n-1,
∴Pn(n2-2n+2,2n-1)(n∈N*).
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2014 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com