精英家教网 > 高中数学 > 题目详情
已知命题p:x>y;则-x<-y;命题q:若x<y;则x2<y2;在命题 ①p∧q,②p∨q,③p∧(¬q),④(¬p)∨q中,真命题是(  )
A、①③B、①④C、②③D、②④
考点:复合命题的真假
专题:简易逻辑
分析:根据不等式的性质分别判定命题p,q的真假,利用复合命题之间的关系即可得到结论
解答: 解:根据不等式的性质可知,若x>y,则-x<-y成立,即p为真命题,
当x=1,y=-1时,满足x>y,但x2>y2不成立,即命题q为假命题,
则①p∧q为假命题;②p∨q为真命题;③p∧(¬q)为真命题;④(¬p)∨q为假命题,
故选:C
点评:本题主要考查复合命题之间的关系,根据不等式的性质分别判定命题p,q的真假是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足x2+ax-2a2<0,命题q:实数x满足x2+2x-8<0,且¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足:?a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a).
(1)用定义证明:f(x)是R上的增函数;
(2)设x,y为正实数,若
4
x
+
9
y
=4试比较f(x+y)与f(6)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是夹角为60°的单位向量,且
a
=2
e1
+
e2
b
=-3
e1
+2
e2

(1)求
a
b
;    
(2)求
a
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-|x3-2x2+x|(x<1)
lnx(x≥1)
,若命题“?t∈R,且t≠0,使得f(t)≥kt”是假命题,则正实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AB
=(2,4),
CB
=(-1,3),则
AC
等于(  )
A、(3,1)
B、(2,-1)
C、(-1,2)
D、(-1,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=3,
a
b
的夹角为60°,则|2
a
-
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
lim
n→∞
n
n+2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,1),
e1
=
a
+2
b
e2
=2
a
-
b
,且
e1
e2
,求x.

查看答案和解析>>

同步练习册答案