精英家教网 > 高中数学 > 题目详情

【题目】某家庭记录了未使用节水龙头30天的日用水量数据(单位:)和使用了节水龙头30天的日用水量数据,得到频数分布表如下:

(一)未使用节水龙头30天的日用水量频数分布表

日用水量

频数

2

3

8

12

5

(二)使用了节水龙头30天的日用水量频数分布表

日用水量

频数

2

5

11

6

6

1)估计该家庭使用了节水龙头后,日用水量小于的概率;

2)估计该家庭使用节水龙头后,平均每天能节省多少水?(同一组中的数据以这组数据所在区间中点的值作代表)

【答案】10.6.2

【解析】

1)由频率为事件A出现的次数,为试验次数,

2)分别算出两种情况用水量的平均数作差即可.

1)根据表格(二),估计该家庭使用了节水龙头后,日用水量小于的频数为

所以所求的概率约为

即该家庭使用节水龙头后日用水量小于的概率的估计值为0.6.

2)该家庭未使用节水龙头30天日用水量的平均数为

该家庭使用了节水龙头后30天日用水量的平均数为

.

因此,使用节水龙头后,平均每天能节省的水量估计为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知对数函数过定点(其中),函数(其中的导函数,为常数)

1)讨论的单调性;

2)若对恒成立,且)处的导数相等,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正项数列的前项和,.

1)证明:数列是等差数列;

2)设,数列的前项和

①求证:

②解关于的不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的圆心在直线上,且圆经过点和点.

1)求圆的标准方程;

2)求经过点且与圆恰有1个公共点的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与轴相切,点关于圆心的对称点为,点的轨迹为.

1)求曲线的方程;

2)一条直线经过点,且交曲线两点,点为直线上的动点.

①求证:不可能是钝角;

②是否存在这样的点,使得是正三角形?若存在,求点的坐标:否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,过点轴的垂线交函数图象于点,以为切点作函数图象的切线交轴于点,再过轴的垂线交函数图象于点,以此类推得点,记的横坐标为

1)证明数列为等比数列并求出通项公式;

2)设直线与函数的图象相交于点,记(其中为坐标原点),求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥中,四边形是等腰梯形,平面.

1)求证:平面

2)已知二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求不等式的解集;

2)若关于的不等式在实数范围内解集为空集,求实数的取值范围.

查看答案和解析>>

同步练习册答案