15£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖá·Ç¸º°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔòÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬µÃµ½µÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®Ö±ÏßB£®ÍÖÔ²C£®Ë«ÇúÏßD£®Ô²

·ÖÎö ½«¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$»¯ÎªÆÕͨ·½³Ì£¬ÀûÓÃÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$ºó£¬¼´¿ÉÅжϣ®

½â´ð ½â£º¼«×ø±ê·½³Ì¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬
¿ÉµÃ£º3y2+4x2=12£¬¼´$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$£¬
ÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=\frac{\sqrt{3}}{3}y}\end{array}\right.$£¬¿ÉµÃ$\left\{\begin{array}{l}{2x¡ä=x}\\{\sqrt{3}y¡ä=y}\end{array}\right.$£º´øÈëÇúÏßC¿ÉµÃ£º$\frac{x{¡ä}^{2}}{\frac{3}{4}}+\frac{y{¡ä}^{2}}{\frac{4}{3}}=1$£¬
¡àÉìËõ±ä»»µÃµ½µÄÇúÏßÊÇÍÖÔ²£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»»ÒÔ¼°ÉìËõ±ä»»µÄ×ö·¨£®ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐÏòÁ¿×éÖУ¬ÄÜ×÷ΪƽÃæÄÚËùÓÐÏòÁ¿µÄ»ùµ×µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{a}$=£¨0£¬0£©£¬$\overrightarrow{b}$=£¨1£¬-2£©B£®$\overrightarrow{a}$=£¨-1£¬2£©£¬$\overrightarrow{b}$=£¨5£¬7£©C£®$\overrightarrow{a}$=£¨3£¬5£©£¬$\overrightarrow{b}$=£¨6£¬10£©D£®$\overrightarrow{a}$=£¨2£¬-3£©£¬$\overrightarrow{b}$=£¨4£¬-6£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=alnx-bx2£¨x£¾0£©£¬Èôº¯Êýy=f£¨x£©ÔÚx=1´¦ÓëÖ±Ïßy=-1ÏàÇУ®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýy=f£¨x£©ÔÚ$[{\frac{1}{e}£¬e}]$ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÒÑÖªµ¥Î»Ô²OÓëxÖáÕý°ëÖáÏཻÓÚµãM£¬µãA£¬BÔÚµ¥Î»Ô²ÉÏ£¬ÆäÖеãAÔÚµÚÒ»ÏóÏÞ£¬ÇÒ¡ÏAOB=$\frac{¦Ð}{2}$£¬¼Ç¡ÏMOA=¦Á£¬¡ÏMOB=¦Â£®
£¨¢ñ£©Èô¦Á=$\frac{¦Ð}{6}$£¬ÇóµãA£¬BµÄ×ø±ê£»
£¨¢ò£©ÈôµãAµÄ×ø±êΪ£¨$\frac{4}{5}$£¬m£©£¬Çósin¦Á-sin¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬Õý·½ÐÎABCDËùÔÚƽÃæÓëËıßÐÎABEFËùÔÚƽÃ滥Ïà´¹Ö±£¬¡÷ABEÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬AB=AE£¬FA=FE£¬¡ÏAEF=45¡ã£®
£¨1£©ÇóÖ¤£ºEF¡ÍƽÃæBCE£»
£¨2£©ÉèÏ߶ÎCD¡¢AEµÄÖеã·Ö±ðΪP¡¢M£¬ÇóPMÓëBCËù³É½ÇµÄÕýÏÒÖµ£»
£¨3£©Çó¶þÃæ½ÇF-BD-AµÄƽÃæ½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏß·½³ÌΪ2x+y=0£¬Ò»¸ö½¹µãΪ£¨$\sqrt{5}$£¬0£©£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ö±Ïßl£º5ax-5y-a+3=0£¨a¡ÊR£© µÄͼÏó±Ø¹ý¶¨µã£¨$\frac{1}{5}£¬\frac{3}{5}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖУ¬µãA£¨-1£¬2£¬0£©¹ØÓÚƽÃæyOzµÄ¶Ô³Æµã×ø±êΪ£¨1£¬2£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¹ýÈý¸öµãA£¨1£¬3£©£¬B£¨4£¬2£©£¬C£¨1£¬-1£©µÄÔ²½»yÖáÓÚM£¬NÁ½µã£¬Ôò|MN|=£¨¡¡¡¡£©
A£®2$\sqrt{6}$B£®3$\sqrt{6}$C£®2D£®5$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸