精英家教网 > 高中数学 > 题目详情

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

【答案】(I).

(II)当时,利润取得最大值.

【解析】分析(I)由题意可求得,结合所给公式可得,从而可得线性回归方程.(II)由题意可得,根据二次函数的知识求得最值即可.

详解(I)由表中数据得

关于的回归直线方程为

(II)根据题意得利润

∴当时,利润取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 .

(1)当时,讨论的单调性;

(2)若函数有两个极值点,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按要求写出下列命题,并判断真假:

1)命题:中,若的逆命题;

2)命题:若两个数的和为有理数,则这两个数都是有理数。的否命题;

3)命题:a≠0b≠0,ab≠0”的逆否命题;

4)命题:a=0b=0,a2+b2=0”的逆否命题;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 天气预报说明天下雨的概率为,则明天一定会下雨

B. 不可能事件不是确定事件

C. 统计中用相关系数来衡量两个变量的线性关系的强弱,若则两个变量正相关很强

D. 某种彩票的中奖率是,则买1000张这种彩票一定能中奖

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.

(1)求椭圆C的方程;

(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱中,为等腰直角三角形,,且分别为的中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者中选拔出节目主持人,现按身高分组,得到的频率分布表如图所示

(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;

(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?

(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况某调查机构借助网络进行了问卷调查并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.

将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为的数学期望和方差.

参考公式 其中.

参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线不过原点且不平行于坐标轴,交于两点,线段的中点为

(1)证明直线的斜率与的斜率的乘积为定值;

(2)过点,延长线段交于点,四边形能否为平行四边形?若能,求出的方程;若不能,说明理由.

查看答案和解析>>

同步练习册答案