精英家教网 > 高中数学 > 题目详情
我们把使得f(x)=0的实数x叫做函数y=f(x)的零点.对于区间[a,b]上的连续函数y=f(x),若f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.则函数f(x)=lnx+2x-6的零点个数为( )
A.0
B.1
C.2
D.多于两个
【答案】分析:求导函数,确定函数的单调性,再用零点存在定理,就可以得出结论.
解答:解:函数的定义域为(0,+∞)
求导函数可得:,∴f′(x)>0
∴函数为单调增函数
∵f(2)=ln2-2<0,f(3)=ln3>0
∴函数在(2,3)上存在唯一零点
故选B.
点评:函数零点的判断,只要满足区间[a,b]上的连续函数y=f(x),若f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x a b c a+b+c
f(x) d d t 4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把使得f(x)=0的实数x叫做函数y=f(x)的零点.对于区间[a,b]上的连续函数y=f(x),若f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.则函数f(x)=lnx+2x-6的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

我们把使得f(x)=0的实数x叫做函数y=f(x)的零点.对于区间[a,b]上的连续函数y=f(x),若f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.则函数f(x)=lnx+2x-6的零点个数为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    多于两个

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把使得f(x)=0的实数x叫做函数y=f(x)的零点.对于区间[a,b]上的连续函数y=f(x),若f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.则函数f(x)=lnx+2x-6的零点个数为

A.0                  B.1                     C.2                     D.多于两个

查看答案和解析>>

同步练习册答案