精英家教网 > 高中数学 > 题目详情
已知椭圆的短轴长为2,焦点坐标分别是(-1,0)和(1,0),
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点,求m的取值范围.
【答案】分析:(1)先由题分析出椭圆的焦点在X轴上且2b=2,c=1;求出a,b即可求椭圆的标准方程;
(2)联立直线方程与椭圆方程,整理为关于的一元二次方程;再结合直线y=x+m与这个椭圆交于不同的两点知道对应的方程有两个不等实根,判别式大于0即可求出m的取值范围.
解答:解:(1)由题得椭圆的焦点在X轴上且2b=2,c=1
∴b=,a2=b2+c2=4.
∴椭圆的标准方程:=1.
(2)由消去Y整理得:7x2+8mx+4m2-12=0.
由直线y=x+m与这个椭圆交于不同的两点得△=(8m)2-4×7×(4m2-12)>0⇒m2<7⇒
所以m的取值范围是(-).
点评:本题涉及到椭圆标准方程的求法.在求圆锥曲线的标准方程时,一定要先判断焦点所在位置,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的短轴长为2
3
,焦点坐标分别是(-1,0)和(1,0).
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点A,B,求m的取值范围;
(3)若(2)中m=1,求该直线与此椭圆相交所得弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的短轴长为2
3
,焦点坐标分别是(-1,0)和(1,0),
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省衡阳八中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知椭圆的短轴长为2,焦点坐标分别是(-1,0)和(1,0).
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点A,B,求m的取值范围;
(3)若(2)中m=1,求该直线与此椭圆相交所得弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源:2010年北京市东城区高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆的短轴长为2,且与抛物线有共同的焦点,椭圆C的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点.
(I)求椭圆C的方程;
(Ⅱ)求线段GH的长度的最小值;
(Ⅲ)在线段GH的长度取得最小值时,椭圆C上是否存在一点T,使得△TPA的面积为1,若存在求出点T的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案