精英家教网 > 高中数学 > 题目详情
17.如图,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角30°.

分析 过B作BE⊥α于B,且BE=24,连接CE、DE,推导出△BDE是等边三角形,平面BDE⊥α,由此能求出线段BD与平面α所成的角.

解答 解:过B作BE⊥α于B,且BE=24(目的是把AC平移到BE),
连接CE、DE,
∵BD⊥AB、BE⊥AB,∴CE⊥平面BDE,∴∠CED=90°
在Rt△CDE中,CE=7,CD=25,∴ED=24,
△BDE中三边均为24,∴△BDE是等边三角形,∴∠EBD=60°,
∵BE⊥α,∴平面BDE⊥α,
∴线段BD与平面α所成的角为30°.
故答案为:30°.

点评 本题考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.计算:
(1)($\frac{1}{2}$)-2-4sin30°+(-1)2011+(π-2)0
(2)($\frac{3}{a+1}$-$\frac{a-3}{{a}^{2}-1}$)÷$\frac{a}{a-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a∈R,a为常数).
(1)若x∈R,求f(x)的最小正周期;
(2)若f(x)在[-$\frac{π}{6}$,$\frac{π}{6}$]上最大值与最小值之和为3,求a的值.
(3)求在(2)条件下,f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.给定命题p、q,若p∧q是真命题,则¬p是假命题
B.两个三角形全等是这两个三角形面积相等的必要条件
C.命题“?x∈R,x2+x+2013>0”的否定是“?x∈R,x2+x+2013<0”
D.函数f(x)=$\frac{1}{x}$在其定义域上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合$M=\left\{{1,-1}\right\},N=\left\{{x\left|{\frac{1}{2}}\right.<{2^{x+1}}<4,x∈Z}\right\}$,M∩N=(  )
A.{-1,1}B.{-1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正方体的外接球的半径为3,则该正方体的棱长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一次函数f(x)=ax-1满足a∈[-1,2]且a≠0,那么对于a,使得f(x)≤0在x∈[0,1]上成立的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\left\{\begin{array}{l}{2x-3y+7≥0}\\{3x-2y-2≤0}\\{x+y-4≥0}\end{array}\right.$,则z=|$\frac{x}{y+x}$|的取值为[$\frac{1}{4}$,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案