精英家教网 > 高中数学 > 题目详情
12.已知数列{an}中,${a_1}=2,{a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{2}$,则数列{an}的通项公式是an=1+$(\frac{1}{2})^{n-1}$.

分析 an+1=$\frac{1}{2}{a}_{n}$+$\frac{1}{2}$,变形为:an+1-1=$\frac{1}{2}$(an-1),利用等比数列的通项公式即可得出.

解答 解:∵an+1=$\frac{1}{2}{a}_{n}$+$\frac{1}{2}$,变形为:an+1-1=$\frac{1}{2}$(an-1),
∴数列{an-1}是等比数列,a1-1=1,公比为$\frac{1}{2}$.
∴an-1=$(\frac{1}{2})^{n-1}$,
∴an=1+$(\frac{1}{2})^{n-1}$,
故答案:${(\frac{1}{2})^{n-1}}+1$.

点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1的点均在C2:x2+(y-5)2=9外,且对C1上任意一点M,M到直线y=-2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(x0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线y=-4上运动时,四点A,B,C,D的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若将θ视为变量,则以原点为圆心,r为半径的圆可表示为$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),问下列何种表示可表示以(a,b)为圆心,r为半径的圆(  )
A.$\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π))B.$\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π))
C.$\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π))D.$\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},则A∩B=(  )
A.[1,+∞)B.[$\frac{1}{2}$,+∞)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为内角A,B,C所对的边,且$\sqrt{3}c=2asinC$.
(1)求角A的大小;
(2)若∠A为锐角,a=2$\sqrt{3}$,S△ABC=2$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,乙看了甲的卡片后说:“我与甲的卡片上相同的数字不是2”,甲看了丙的卡片说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则写有数字“1和3”的卡片一定在乙手上(填“甲”“乙”“丙”中一个)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\frac{1}{x}$(x>0),g(x)=log2(2-|x+1|)
(1)写出函数g(x)的单调区间.
(2)若y=a 与函数g(x)的图象恰有1个公共点M,N 是f(x)图象上的动点.求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线1:ax+by+1=0(a>0,b>0)把圆C:(x+4)2+(y+1)2=16分成面积相等的两部分,则当ab取得最大值时,坐标原点到直线1的距离是(  )
A.4B.8$\sqrt{17}$C.2D.$\frac{8\sqrt{17}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列结论为真的个数是(  )
(1)“x2+2x-3<0”是命题
(2)命题“若p,则q”的否命题是“若p,则¬q”
(3)当q是p的必要条件时,p是q的充分条件
(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案