精英家教网 > 高中数学 > 题目详情

【题目】若偶函数f(x)在(﹣∞,0]上单调递减,a=f(log23),b=f(log45),c=f(2 ),则a,b,c满足(
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a

【答案】B
【解析】解:∵偶函数f(x)在(﹣∞,0]上单调递减, ∴f(x)在{0,+∞)上单调递增,
∵2>log23=log49>log45,2 >2,
∴f(log45)<f(log23)<f(2 ),
∴b<a<c,
故选:B.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数值大小的比较的理解,了解几个重要的对数恒等式:;常用对数:,即;自然对数:,即(其中…).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,则双曲线C1 ﹣y2=1与双曲线C2 ﹣x2=1的(
A.焦点相同
B.顶点相同
C.渐近线相同
D.离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某一等差数列的首项为,公差为展开式中的常数项,其中除以19的余数,则此数列前多少项的和最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中,将四边形沿对角线折成四面.使平面平面,则下列结论正确的是( ).

A. B.

C. 与平面所成的角为 D. 四面体的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]时,求fx)的值域;

(2)当x[﹣1,1]时,求fx)的最小值ha);

(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }为等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了日至日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温度x

10

11

13

12

8

发芽数y

23

25

30

26

16

设农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验

1求选取的组数据恰好是不相邻天数据的概率;

2若选取的是日与日的两组数据,请根据日与日的数据,求关于的线性回归方程

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问2中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

同步练习册答案