精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求证:当时,函数上存在唯一的零点;

(Ⅱ)当时,若存在,使得成立,求的取值范围.

【答案】(Ⅰ)证明见解析;(Ⅱ).

【解析】分析:(Ⅰ)f求导得,所以,则函数单调递增,计算f,即可证明结论.
(Ⅱ)由(Ⅰ),

时,单调递增,

时,单调递减,当时,时取最大值最大值为.“存在,使得成立”等价于“时,”,即可得出.

详解:

(Ⅰ)函数,定义域为

,所以,则函数单调递增,

函数上单调递增,

所以函数上存在唯一的零点.

(Ⅱ)由(Ⅰ),

时,单调递增,

时,单调递减,

时取最大值,且最大值为.

“存在,使得成立”等价于“时,”,所以,即

,则单调递增,且

所以当时,,当时,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在区间上单调递减,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·重庆高二检测)如图三棱柱ABC-A1B1C1侧棱垂直底面ACB=90°AC=BC=AA1D是棱AA1的中点.

(1)证明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱为两部分求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:

喜欢盲拧

不喜欢盲拧

总计

22

30

12

总计

50

1

并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:

成功完成时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40]

人数

10

10

5

5

2

(1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?

(2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替);

(3)现从表2中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为,求的分布列及数学期望.

附参考公式及数据:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,M为直线x=﹣3上任意一点,过F作MF的垂线交椭圆C于点P,Q.证明:OM经过线段PQ的中点N.(其中O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面 垂直于为棱上的点,.

(1)若为棱的中点,求证://平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金。

(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)

附:若,则.

(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.

(3)某顾客消费额为元,有两种摸奖方法,

方法一:三次箱内摸奖机会;

方法二:一次箱内摸奖机会.

请问:这位顾客选哪一种方法所得奖金的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

分组(岁)

频数

合计

1)求频数分布表中的值,并补全频率分布直方图;

2)在抽取的这名市民中,从年龄在内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线x轴交于不同的两点AB,曲线Γy轴交于点C

1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;

2)求证:ABC三点的圆过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案