精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2
x+1x-1
+log2(x-1)+log2(p-x)

(1)求函数f (x)的定义域;.
(2)解关于x的不等式:f(x)>log2(2x2-2x-4)
(3)求函数f (x)的值域.
分析:(1)根据对数的定义可知真数要大于0,建立关系式,求出交集即可求出函数f (x)的定义域;.
(2)先利用对数的运算性质进行化简整理,然后建立方程,讨论p的取值范围,从而求出不等式的解集;
(3)讨论真数所对应的二次函数的对称轴,从而得到二次函数在定义域上的单调性,从而得到二次函数的值域,根据复合函数的值域求解方法可求出所求.
解答:解:(1)由
x+1
x-1
>0
x-1>0
p-x>0
?
x>1或x<-1
x>1
x<p
?
x>1
x<p

∵函数的定义域不能为空集,故p>1,函数的定义域为(1,p).
(2)若1<P≤2,解集φ若P>2,解集(2,
4+p
3
)

(3)f(x)=log2[
x+1
x-1
•(x-1)•(p-x)]=log2(x+1)(p-x)=log2[-x2+(p-1)x+p]

t=-x2+(p-1)x+p=-(x-
p-1
2
)2+
(p+1)2
4
=g(x)

①当
p-1
2
<1
p>1
,即1<p<3时,t在(1,p)上单调减,g(p)<t<g(1),即0<t<2p-2,
∴f(x)<1+log2(p-1),
函数f(x)的值域为(-∞,1+log2(p-1));
②当
1≤
p-1
2
p+1
2
p>1
即p≥3时,g(p)<t≤g(
p-1
2
)

0<t≤
(p+1)2
4

∴f(x)≤2log2(p+1)-2,函数f(x)的值域为(-∞,2log2(p+1)-2).
综上:当1<p<3时,函数f(x)的值域为(-∞,1+log2(p-1));
当p≥3时,函数f(x)的值域为(-∞,2log2(p+1)-2)
点评:本题主要考查了对数函数的定义域以及对数不等式,同时考查了利用单调性研究函数值域的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案