精英家教网 > 高中数学 > 题目详情
如图,将一副三角板拼接,使他们有公共边BC,且使这两个三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(1)证明:平面ADC⊥平面ADB;
(2)求二面角A-CD-B平面角的正切值.
考点:二面角的平面角及求法,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知得BD⊥面ABC,BD⊥AC,从而AC⊥面ADB,由此能证明面ADC⊥面ADB.
(2)取BC的中点E,连接AE,则AE⊥BC,从而AE⊥面BCD,过E作EF⊥DC于F,连接AF,则∠AFE是二面角A-CD-B的平面角,由此能求出二面角A-CD-B平面角的正切值.
解答: (本小题满分14分)
(1)证明:因为面ABC⊥面BCD,BD⊥BC,
面ABC∩面BCD=BC,BD?面BCD,
所以BD⊥面ABC.(3分)
又AC?面ABC,所以BD⊥AC.(4分)
又AB⊥AC,且BD∩AB=B,
所以AC⊥面ADB.(5分)
又AC?面ADC,所以面ADC⊥面ADB.(6分)
(2)解:取BC的中点E,连接AE,则AE⊥BC,(7分)
又面ABC⊥面BCD,面ABC∩面BCD=BC,
所以AE⊥面BCD,(8分)
所以AE⊥CD,过E作EF⊥DC于F,连接AF,
则DC⊥面AEF,则DC⊥AF,所以∠AFE是二面角A-CD-B的平面角.(11分)
在Rt△CEF中,∠ECF=300,EF=
1
2
CE=
3
2
,又AE=3,(13分)
所以tan∠AFE=
AE
EF
=2

即二面角A-CD-B平面角的正切值为2.(14分)
点评:本题考查平面与平面垂直的证明,考查二面角的正切值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“x=0”是“x2+y2=0”的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如果log 
1
2
|x-
π
3
|≥log 
1
2
π
2
那么sinx的取值范围是
 

(2)如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值
范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则
S1
a1
S2
a2
,…,
Sn
an
 (n∈N*,n≤18))中最大的项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2+2x+(2-a)lnx
(1)当a=-2时,求f(x)的最大值
(2)若在函数f(x)的定义域内存在区间D,使得该函数在区间D上为减函数,求a的取值范围
(3)若曲线C:y=f(x)在点x=1处的切线l与C有且只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,g(x)是偶函数,则(  )
A、f(x)g(x)是偶函数
B、f(x)g(x)是奇函数
C、f(x)+g(x)是偶函数
D、f(x)+g(x)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x
1-x
在(  )
A、(-∞,1)∪(1,+∞)上是增函数
B、(-∞,1)∪(1,+∞)上是减函数
C、(-∞,1),(1,+∞)分别是增函数
D、(-∞,1),(1,+∞)分别是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图输出的结果是(  )
A、8B、6C、5D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+1关于直线y+2=0对称的直线方程是
 

查看答案和解析>>

同步练习册答案