精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

【答案】(1)见解析;(2).

【解析】分析:(1)利用代入消参法把直线的参数方程互为普通方程,利用,把曲线C的极坐标方程转化为直角坐标方程;

(2)把直线的参数方程化为标准形式,代入曲线的直角坐标方程,利用韦达定理表示即可.

详解:(1) 的普通方程为:

,

即曲线的直角坐标方程为:

(2)解法一: 在直线上,直线的参数方程为(为参数),代入曲线的直角坐标方程得 ,即,

.

解法二:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在处的切线方程为,求的值;

(2)若,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),e= ,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 ,且 (其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:

-1

0

4

5

1

2

2

1

则下列关于的命题:

为函数的一个极大值点;

②函数的极小值点为2;

③函数上是减函数;

④如果当时,的最大值是2,那么的最大值为4;

⑤当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地服务民众,某共享单车公司通过向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.

(I)求用户骑行一次获得0元奖券的概率;

(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:

观看世界杯

不观看世界杯

总计

40

20

60

15

25

40

总计

55

45

100

经计算的观测值.

附表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参照附表,所得结论正确的是(

A. 以上的把握认为该小区居民是否观看世界杯与性别有关

B. 以上的把握认为该小区居民是否观看世界杯与性别无关

C. 在犯错误的概率不超过0.005的前提下,认为该小区居民是否观看世界杯与性别有关

D. 在犯错误的概率不超过0.001的前提下,认为该小区居民是否观看世界杯与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案