【题目】设数列{an}的前n项和Sn=2an﹣a1 , 且a1 , a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列 的前n项和Tn , 求使得 成立的n的最小值.
【答案】
(1)解:∵Sn=2an﹣a1,∴an=Sn﹣Sn﹣1=2an﹣2an﹣1(n>1),
即an=2an﹣1(n>1).
从而a2=2a1,a3=4a1,
又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).
∴a1+4a1=2(2a1+1),解得a1=2.
∴数列{an}是首项为2,公比为2的等比数列.
故 .
(2)解:由(1)得 .
∴ .
由 ,得 ,即2n>2016.
∵210=1024<2016<2048=211,
∴n≥11.
于是,使 成立的n的最小值为11
【解析】(1)由已知Sn=2an﹣a1 , 有an=Sn﹣Sn﹣1=2an﹣2an﹣1(n>1),即an=2an﹣1(n>1).由a1 , a2+1,a3成等差数列,即a1+a3=2(a2+1).解出即可得出.(2)利用等比数列的前n项和公式及其不等式的性质即可得出.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)定义在区间(﹣1,1)内,对于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数. (Ⅰ)求a的值;
(Ⅱ)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(ax+1)+mx是偶函数.
(1)求m;
(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 , y1),B(x2 , y2)均在抛物线上.
(1)求该抛物线方程;
(2)若AB的中点坐标为(1,﹣1),求直线AB方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com