精英家教网 > 高中数学 > 题目详情
16.已知i是虚数单位,若z(2-i)=2+4i,则复数z=2i.

分析 由z(2-i)=2+4i,得$z=\frac{2+4i}{2-i}$,然后利用复数代数形式的乘除运算化简复数z即可得答案.

解答 解:由z(2-i)=2+4i,
得$z=\frac{2+4i}{2-i}$=$\frac{(2+4i)(2+i)}{(2-i)(2+i)}=\frac{10i}{5}=2i$,
故答案为:2i.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设某等腰三角形的底角为α,顶角为β,且cosβ=$\frac{3}{5}$.
(Ⅰ)求sinα的值;
(Ⅱ)若函数f(x)=tanx在[-$\frac{π}{3}$,α]上的值域与函数g(x)=2sin(2x-$\frac{π}{3}$)在[0,m]上的值域相同,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠DAB=θ(0<θ<$\frac{π}{2}$),L为等腰梯形ABCD的周长.
(1)求周长L与θ的函数解析式;
(2)试问周长L是否存在最大值?若存在,请求出最大值,并指出此时θ的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=$\frac{1}{2}$BC=2,E在BC上,且BE=$\frac{1}{2}$AB=1,侧棱PA⊥平面ABCD.
(1)求证:平面PDE⊥平面PAC;
(2)若△PAB为等腰直角三角形.
(i)求直线PE与平面PAC所成角的正弦值;
(ii)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x∈R,则“x>2”是“|x-1|>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$f(x)=sinωx+\sqrt{3}cosωx({ω>0,x∈R})$,若函数f(x)在区间(0,4π)内恰有5个零点,则ω的取值范围是$\frac{7}{6}<ω≤\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3,若不等式f(-4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(x-2)10展开式中,二项式系数的最大值为 a,含x7项的系数为b,则$\frac{b}{a}$=(  )
A.$\frac{80}{21}$B.$\frac{21}{80}$C.$-\frac{21}{80}$D.$-\frac{80}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1,则实数a的值为(  )
A.0B.1C.±2D.2

查看答案和解析>>

同步练习册答案