【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中,,为中点.
(1)求证:平面;
(2)求锐二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连接,证明四边形为平行四边形,所以,所以平面;(2)以为原点,所在直线分别为轴,轴,轴建立坐标系,利用两个半平面的法向量求得二面角的余弦值为.
试题解析:
(1)证明:
如图,连接,则四边形为正方形,所以,且,....2分
故四边形为平行四边形,所以,
又平面平面,
所以平面...............5分
(2)因为为的中点,所以,又侧面底面,
交线为,故底面.........................6分
以为原点,所在直线分别为轴,轴,轴建立如图所示的坐标系,
则,
∴,
设为平面的一个法向量,由,得,
令,则,∴.
又设为平面的一个法向量,由,得,令,
则,∴,.............9分
则,故所求锐二面角的余弦值为.........12分
注:第2问用几何法做的酌情给分.
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 |
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年下学期某市教育局对某校高三文科数学进行教学调研,从该校文科生中随机抽取名学生的数学成绩进行统计,将他们的成绩分成六段后得到如图所示的频率分布直方图.
(1)求这40名学生中数学成绩不低于120分的学生人数;
(2)若从数学成绩内的学生中任意抽取2人,求成绩在中至少有一人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.
(1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出y=f(x)的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的中位数;
(2)将表示为的函数;
(3)根据直方图估计利润不少于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 (x≥0)成等差数列.又数列{an}(an>0)中,a1=3 ,此数列的前n项的和Sn(n∈N*)对所有大于1的正整数n都有Sn=f(Sn-1).
(1)求数列{an}的第n+1项;
(2)若是,的等比中项,且Tn为{bn}的前n项和,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面α⊥平面β,α∩β=n,直线lα,直线mβ,则下列说法正确的个数是( )
①若l⊥n,l⊥m,则l⊥β;②若l∥n,则l∥β;③若m⊥n,l⊥m,则m⊥α.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com