精英家教网 > 高中数学 > 题目详情

【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.

喜爱数学课

不喜爱数学课

合计

男生

90

20

110

女生

70

40

110

合计

160

60

220

1)根据上面的列联表判断,能否有的把握认为喜爱数学课与性别有关;

2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1男生的概率.

参考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)有(2

【解析】

1)由列联表数据,根据参考公式求出观测值,结合提供数据,即可得出结论;

(2)分层抽样男生应抽取2人,女生应抽取4人,按男女生编号,列出从6人中任取2人的所有情况,确定至少有1名男生的抽取方法个数,由古典概型的概率公式,即可求解.

(1)根据列联表数据,

计算

所以有的把握认为喜爱数学课与性别有关”.

2)从不喜爱数学课的人员中按分层抽样法抽取6人,

男生应抽取2人,设为AB,女生应抽取4人,设为abcd

从中随机抽出2人,总的情况为

,共15种,

至少有1名男生的情况数为9

所以根据古典概型的公式,得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50.则根据模型可知在10月份每件售价约为_____.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:

,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.

1)当时,判断该项举措能否获利?如果能获利,求出最大利润;

如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?

2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的参数方程是t为参数),以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为

1)求直线l的普通方程和圆C的直角坐标方程;

2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,ABE的中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,△PCD为正三角形,平面PCD⊥平面ABCDEPC的中点.

1)证明:AP∥平面EBD

2)证明:BEPC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P40)的动直线与抛物线C交于点AB,且(点O为坐标原点).

1)求抛物线C的方程;

2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQBQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案