精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A. B. C的对边分别为a,b,c,己知=b(c-asinC)。

(1)求角A的大小;

(2)若b+c=,求△ABC的面积。

【答案】(1);(2).

【解析】

(1)由条件可得ccosA=c-asinC.由正弦定理得sinA+cosA=化简得sin(A+)=,解得A即可.

(2)由余弦定理得3=b2+c2-bc,即3=(b+c)2-3bc,b+c=,解得bc=.可求△ABC面积.

(1)∵

cbcosA=b(c-asinC),

ccosA=c-asinC.由正弦定理得sinCcosA=sinC-sinAsinC,

∵ sinC0,

cosA=-sinA,即sinA+cosA=

所以sinA+cosA=,即sin(A+)=

∵ 0<A<,∴ .∴ A+=,即A=

(2)在△ABC中,由余弦定理得 a2=b2+c2-2bccosA,

由(1)得A=,所以a2=b2+c2-2bccos,即a2=b2+c2-bc. ∵ a=

∴ 3=b2+c2-bc,即3=(b+c)2-3bc.

已知b+c=,解得bc=. 所以△ABC的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.

1)求整个过程中恰好取到2个白球的概率;

2)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断的单调性,并证明之;

2)若存在实数,使得函数在区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率与双曲线的离心率互为倒数,分别为椭圆的左、右顶点,且.

1)求椭圆的方程;

2)已知过左顶点的直线与椭圆另交于点,与轴交于点,在平面内是否存在一定点,使得恒成立?若存在,求出该点的坐标,并求面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的取值范围是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:①);②当)时,;③当)时,,记数列的前项和为.

1)求的值;

2)若,求的最小值;

3)求证:的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥各棱所在的6条直线上,互相垂直的最多有儿对?(每两条组成一对)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市为拟定出台房产限购的年龄政策为了解人们对房产限购年龄政策的态度,对年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持房产限购的人数与年龄的统计结果如下:

年龄

支持的人数

15

5

15

28

17

1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过的前提下认为以44岁为分界点的不同人群对房产限购年龄政策的支持度有差异;

44岁以下

44岁及44岁以上

总计

支持

不支持

总计

2)若以44岁为分界点,从不支持房产限购的人中按分层抽样的方法抽取8人参加政策听证会.现从这8人中随机抽2人.

①抽到1人是44岁以下时,求抽到的另一人是44岁以上的概率.

②记抽到44岁以上的人数为X,求随机变量X的分布列及数学期望.

参考数据:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同

从盒子中随机取出2个球,求取出的2个球颜色相同的概率.

从盒子中随机取出4个球,其中红球个数分别记为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案