【题目】如图,三棱柱中,侧面为菱形,.
(1)求证:平面;
(2)若,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;
(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.
(1)证明:设,连接,如下图所示:
∵侧面为菱形,
∴,且为及的中点,
又,则为直角三角形,
,
又,
,即,
而为平面内的两条相交直线,
平面.
(2)
平面,
平面,
,即,
从而两两互相垂直.
以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系
,
为等边三角形,
,
,
,
设平面的法向量为,则,即,
∴可取,
设平面的法向量为,则.
同理可取
,
由图示可知二面角为锐二面角,
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间T(单位:年)的衰变规律满足(表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的______;经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约在5730年到______年之间.(参考数据:,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】.(本小题满分16分)
已知函数,并设,
(1)若图像在处的切线方程为,求、的值;
(2)若函数是上单调递减,则
① 当时,试判断与的大小关系,并证明之;
② 对满足题设条件的任意、,不等式恒成立,求的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知向量,,且.记动点的轨迹为.
(1)求的方程;
(2)已知直线过坐标原点,且与(1)中的轨迹交于两点,在第三象限,且轴,垂足为,连接并延长交于点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,点是它的右端点,弦过椭圆的中心,,.
(1)求椭圆的标准方程;
(2)设、为圆上不重合的两点,的平分线总是垂直于轴,且存在实数,使得,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.
(1)求曲线的普通方程和极坐标方程;
(2)设直线与曲线交于两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com