【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
【答案】B
【解析】
①将所给函数化为,由余弦型函数最小正周期的求法可知①正确;
②当时,可知所表示角终边不在轴上,知②错误;
③令,利用导数可确定时,的单调性,结合奇偶性可知时,的单调性,进而确定零点个数,即可知两函数交点仅有一个,③错误;
④由三角函数左右平移原则可得到结果,知④正确;
⑤利用诱导公式将所给函数化为,根据余弦函数在区间内的单调性可得所求函数的单调性,知⑤错误.
①中,
最小正周期,①正确;
②中,当时,,终边在轴上,②错误;
③中,令,则,可知为奇函数
当时, 在上单调递减
由为奇函数可得在上单调递减
综上所述:仅有一个零点,即与仅有一个公共点,③错误;
④中,向右平移个单位得,④正确;
⑤中,,当时,单调递减,则单调递增,⑤错误.
故选:
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点在线段上运动,则 ( )
A.直线平面
B.三棱锥的体积为定值
C.异面直线与所成角的取值范围是
D.直线与平面所成角的正弦值的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上E:(),点为平面上一点,O为坐标原点.
(1)当取最小值时,求椭圆E的方程;
(2)对(1)中的椭圆E,P为其上一点,若过点的直线l与椭圆E相交于不同的两点S和T,且满足(),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆在圆:外部且与圆相切,同时还在圆:内部与圆相切.
(1)求动圆圆心的轨迹方程;
(2)记(1)中求出的轨迹为,与轴的两个交点分别为、,是上异于、的动点,又直线与轴交于点,直线、分别交直线于、两点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(,为参数),曲线的参数方程为(为参数),直线与曲线交于,两点.
(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为进一步优化教育质量平台,更好的服务全体师生,七天网络从甲、乙两所学校各随机抽取100名考生的某次“四省八校”数学考试成绩进行分析,分别绘制的频率分布直方图如图所示.
为了更好的测评各个学校数学学科的教学质量,该公司依据每一位考生的数学测试分数将其划分为“,,”三个不同的等级,并按照不同的等级,设置相应的对学校数学学科教学质量贡献的积分,如下表所示.
测试分数的范围 | 分数对应的等级 | 贡献的积分 |
等 | 1分 | |
等 | 2分 | |
等 | 3分 |
(1)用样本的频率分布估计总体的频率分布,若将甲学校考生的数学测试等级划分为“等”和“非等”两种,利用分层抽样抽取10名考生,再从这10人随机抽取3人,求3人中至少1人数学测试为“等”的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,若从乙学校全体考生中随机抽取3人,记3人中数学测试等级为“等”的人数为,求的分布列和数学期望;
(3)根据考生的数学测试分数对学校数学学科教学质量贡献的积分规则,分别记甲乙两所学校数学学科质量的人均积分为和,用样本估计总体,求和的估计值,并以此分析,你认为哪所学校本次数学教学质量更加出色?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、、、是同一平面上不共线的四点,若存在一组正实数、、,使得,则三个角、、( )
A. 都是钝角B. 至少有两个钝角
C. 恰有两个钝角D. 至多有两个钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域是,有下列结论:①当时,; ②当时,;③当时,; ④当时,.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com