精英家教网 > 高中数学 > 题目详情
10.已知f(x)是定义在R上的奇函数满足:f(x)=f (x+4),当x∈(0,2)时,f(x)=2x2,则f(7)=-2.

分析 由f(x+4)=f(x)求出函数的周期是4,利用函数的周期性、奇函数的性质,将f(7)转化为-f(1),代入已知的解析式求值即可.

解答 解:因为f(x+4)=f(x),
所以函数f(x)是以周期是4的周期函数,
因当c∈(0,2)时,f(x)=2x2,f(x)是奇函数,
所以f(7)=f(8-1)=f(-1)=-f(1)=-2,
故答案为-2.

点评 本题考查函数的奇偶性、周期性的综合应用,考查转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{3}sin2ωx-cos2ωx$(其中ω∈(0,1)),若f(x)的图象经过点$(\frac{π}{6},0)$,则f(x)在区间[0,π]上的单调递增区间为$[{0,\frac{2π}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$y=\sqrt{-{x^2}-2x+8}$的定义域为A,值域为B,则A∪B=[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x2-ax+a2-12=0},B={x|x2-2x-8=0},C={x|mx+1=0}.
(Ⅰ)若A=B,求a的值;       
(Ⅱ)若B∪C=B,求实数m的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z是纯虚数,且(2+i)z=1+ai3(i是虚数单位,a∈R),则|a+z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数(  )
A.0个B.2个C.3个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},则M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)“H函数”.下列函数是“H函数”的所有序号为①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

同步练习册答案