精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系 xOy 中,已知椭圆 C1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PAy轴于点CPBx轴于点D.

(1) 求椭圆 C 的标准方程;

(2) PCD 面积的最大值.

【答案】(1)y21(2)1

【解析】

1)由离心率,再把点坐标代入1,结合可求得,得椭圆标准方程;

2)设直线方程为,可求得的坐标,由共线求得点坐标,这样可求得,令换元后用基本不等式求得最大值.

(1) 由题意得:a24b21

故椭圆C的标准方程为:y21.

(2) 由题意设lAPyk(x2),- <k<0,所以C(02k)

y(14k2)x216k2x16k240,所以xAxP

xA=-2xP,故yPk(xP2)

所以P

D(x00),因B(01)PBD三点共,所以kBDkPB,故

解得x0,得D

所以SPCDSPADSCAD×AD×|yPyC|

因为-<k<0,所以SPCD=-2

t12k1<t<2,所以2k1t

所以g(t)=-2=-2

=-221

当且仅当t时取等号,此时k,所以PCD面积的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知矩形所在平面与半圆弧所在平面垂直,是半圆弧上异于的点.

1)证明:平面平面

2)若,当三棱锥的体积最大且二面角的平面角的大小为时,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过动点P(1,t)作直线交椭圆CAB两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Cy24x的焦点为F,过F的直线lC交于AB两点,点M的坐标为(﹣10.

1)当lx轴垂直时,求ABM的外接圆方程;

2)记AMF的面积为S1BMF的面积为S2,当S14S2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.

(I)求动点P的轨迹E的方程

(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于BC两点,求证:直线ABAC的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处的切线与直线平行,求实数的值;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若在函数定义域内,总有成立,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:

(Ⅰ)求这件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.

(i)利用该正态分布,求

(ii)已知每件该产品的生产成本为元,每件合格品(质量指标值)的定价为元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户元。若该公司卖出件这种产品,记表示这件产品的利润,求.

附:.若,则 .

查看答案和解析>>

同步练习册答案