精英家教网 > 高中数学 > 题目详情
已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
,若x,y满足不等式|x|+|y|≤1,则z的取值范围为(  )
A、[-2,2]
B、[-2,3]
C、[-3,2]
D、[-3,3]
分析:根据平面向量的垂直的坐标运算法则,我们易根据已知中的
a
=(x+z,3),
b
=(2,y-z),
a
b
,构造出一个关于x,y,z的方程,即关于Z的目标函数,画了约束条件|x|+|y|≤1对应的平面区域,并求出各个角点的坐标,代入即可求出目标函数的最值,进而给出z的取值范围.
解答:精英家教网解:∵
a
=(x+z,3),
b
=(2,y-z),
又∵
a
b

∴(x+z)×2+3×(y-z)=2x+3y-z=0,
即z=2x+3y
∵满足不等式|x|+|y|≤1的平面区域如下图所示:
由图可知当x=0,y=1时,z取最大值3,
当x=0,y=-1时,z取最小值-3,
故z的取值范围为[-3,3]
故选D
点评:本题考查的知识点是数量积判断两个平面向量的垂直关系,简单线性规划的应用,其中利用平面向量的垂直的坐标运算法则,求出目标函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河北区一模)已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
.若x,y满足不等式|x|+|y|≤1,则z的取值范围为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x-z,1),
b
=(2,y+z),且
a
b
,若变量x,y满足约束条件
x≥-1
y≥x
3x+2y≤5
,则z的最大值为
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
.若x,y满足不等式|x|+|y|≤1,则z的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(x+z,3),b=(2,y-z),且a⊥  b.若x,y满足不等式,则z的取值范围为

       A.[-2,2]        B.[-2,3]        C.[-3,2]          D.[-3,3]

查看答案和解析>>

同步练习册答案