精英家教网 > 高中数学 > 题目详情

如图,为圆柱的母线,是底面圆的直径,分别是的中点,
(1)证明:
(2)求四棱锥与圆柱的体积比;
(3)若,求与面所成角的正弦值.

解:(1)证明:连结.分别为的中点,∴.
,且.∴四边形是平行四边形,
. ∴.   ………………………4分
(2)由题,且由(1)知.∴,∴ ,∴.
是底面圆的直径,得,且
,即为四棱锥的高.设圆柱高为,底半径为

. ………………………9分
(3)解一:由(1)(2)可知,可分别以为坐标轴建立空间直角标系,如图
,则,从而
,由题,是面的法向量,设所求的角为.
. …………………14分
解二:作过的母线,连结,则是上底面圆的直径,连结
,又,∴,连结
与面所成的角,设,则
.……12分
中,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

矩形中,⊥面上的点,且⊥面交于点.
(1)求证:
(2)求证://面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ (0<λ<1).

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时?平面BEF⊥平面ACD. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。

(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E—DF—C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k值是(  )

A.1 B. C. D.

查看答案和解析>>

同步练习册答案