【题目】已知椭圆C: =1(a>b>0)的焦距为2 ,长轴长为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,过坐标原点O作两条互相垂直的射线,与椭圆C交于A,B两点.设A(x1 , y1),B(x2 , y2),直线AB的方程为y=﹣2x+m(m>0),试求m的值.
【答案】解:(Ⅰ)∵椭圆C: =1(a>b>0)的焦距为2 ,长轴长为4,
∴c= ,a=2,
∴b=1,
∴椭圆C的标准方程为 =1;
(Ⅱ)直线AB的方程为y=﹣2x+m(m>0),代入椭圆方程得
17x2﹣16mx+4m2﹣4=0,
则x1+x2= ,x1x2= ,①
由OA⊥OB,
知x1x2+y1y2=x1x2+(﹣2x1+m)(﹣2x2+m)
=5x1x2﹣2m(x1+x2)+m2=0,
将①代入,得5× ﹣2m× +m2=0,
∵m>0,
∴m=2.
【解析】(Ⅰ)利用椭圆C: =1(a>b>0)的焦距为2 ,长轴长为4,求出椭圆的几何量,可得椭圆C的标准方程;(Ⅱ)直线AB、联立椭圆方程,消去y,运用韦达定理,由OA⊥OB,则有x1x2+y1y2=0,化简整理即可求m的值.
科目:高中数学 来源: 题型:
【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.
(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;
(2)若已从年龄在的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二面角α﹣AB﹣β是直二面角,P为棱AB上一点,PQ、PR分别在平面α、β内,且∠QPB=∠RPB=45°,则∠QPR为( )
A.45°
B.60°
C.120°
D.150°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A1、A2为椭圆 的左右顶点,若在椭圆上存在异于A1、A2的点P,使得 ,其中O为坐标原点,则椭圆的离心率e的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?
(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC= ,SA=SC=SD=2.
(I)求证:AC⊥SD;
(Ⅱ)求二面角A﹣SB﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com