精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的长轴长为,且经过点.

(1)求椭圆的标准方程;

(2)过椭圆右焦点作两条互相垂直的弦,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)由题意知,将点代入椭圆方程, 可得,由此可知椭圆的标准方程;

(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得|的表达式,利用换元法及二次函数的性质计算即得结论.

试题解析:(1)由题意知,根据经过点 可得,由此可知椭圆的标准方程为.

(2)当两条弦中一条斜率为时,另一条弦的斜率不存在,由题意知

当两弦斜率均存在且不为时,设 ,且设直线的方程为,则直线的方程为

将直线的方程代入椭圆方程中,并整理得,则

所以

同理

所以 ,令

,设

因为,所以,所以

所以,综上可知, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )

7816

6572

0802

6314

0702

4369

1128

0598

3204

9234

4935

8200

3623

4869

6938

7481

A.08B.07C.02D.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,则①数列单调递增;②;③对于给定的实数,若对任意的成立,必有.上述三个结论中正确个数是(

A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间

(2)设函数.时,若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和极值;

(2)若有两个零点,求实数的范围;

(3)已知函数与函数的图象关于原点对称,如果,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若曲线与直线相切,求的值.

Ⅱ)若求证:有两个不同的零点,且.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

查看答案和解析>>

同步练习册答案