A. | [1,e] | B. | (1,e] | C. | (1+$\frac{1}{e}$,e] | D. | [1+$\frac{1}{e}$,e] |
分析 由x1+x22•e${\;}^{{x}_{2}}$-a=0成立,解得x22•e${\;}^{{x}_{2}}$=a-x1,根据题意可得:a-1≥(-1)2e-1,且a-0≤12×e1,解出并且验证等号是否成立即可得出答案.
解答 解:由x1+x22•e${\;}^{{x}_{2}}$-a=0成立,解得x22•e${\;}^{{x}_{2}}$=a-x1,
∴对任意的x1∈[0,1],总存在唯一的x2∈[-1,1],使得x1+x22•e${\;}^{{x}_{2}}$-a=0成立,
∴a-1≥(-1)2e-1,且a-0≤12×e1,
解得1+$\frac{1}{e}$≤a≤e,其中a=1+$\frac{1}{e}$时,x2存在两个不同的实数,因此舍去,a的取值范围是(1+$\frac{1}{e}$,e].
故选:C.
点评 本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | -7 | C. | -9 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com