精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)满足f(x+1)=2x+3,若f(m)=3,则m=1.

分析 求出函数的解析式,代值计算即可

解答 解:∵f(x+1)=2x+3=2(x+1)+1,
∴f(x)=2x+1,
∵f(m)=3,
∴2m+1=3,
解得m=1,
故答案为:1

点评 本题考查函数的解析式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为$ρcos({θ-\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2sinθ.
(1)求曲线C1与曲线C2交点M的直角坐标;
(2)设点A,B分别是曲线曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某餐厅装修,需要大块胶合板20张,小块胶合板50张.已知市场出售A、B两种不同规格的胶合板,经过测算,A种规格的胶合板可同时裁得大块胶合板2张,小块胶合板6张,B种规格的胶合板可同时裁得大块胶合板1张,小块胶合板2张.已知A种规格胶合板每张200元,B种规格胶合板每张72元,分别用x,y表示购买A、B两种不同规格胶合板的张数.
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)根据施工需求,A,B两种不同规格的胶合板各买多少张花费资金最少?并求出最少资金数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.
(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?
(2)在(1)的条件下,建直线通道AD还需要多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U={1,3,5},集合A={1,5},则∁UA={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数$y=\frac{ax+2}{x+2}$在区间(-2,+∞)上是增函数,则a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2log3(3-x)-log3(1+x).
(1)求f(x)的定义域;
(2)当0≤x≤2时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:y=kx+$\sqrt{3}$与y轴的交点是椭圆C:x2+$\frac{y^2}{m}=1({m>0})$的一个焦点.
(1)求椭圆C的方程;
(2)若直线l与椭圆C交于A、B两点,是否存在k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b为有理数),则b=44.

查看答案和解析>>

同步练习册答案