据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度(千米∕时)之间有如下函数关系:。已知甲、乙两地相距100千米。
(1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(1),(2)当汽车以千米∕时的速度行驶时,从甲地到乙地耗油最少,最少为升
解析试题分析:(1)解实际问题应用题,需正确理解题目含义. 从甲地到乙地需耗油等于每小时的耗油量乘以行驶时间. 从甲地到乙地行驶了(小时),每小时的耗油量为,,所以共需耗油,(2)在(1)的基础上,将从甲地到乙地耗油表示为速度的函数关系式:,利用导数求出其极小值,也是最小值.解题过程中需明确极值点是否在定义区间内.
试题解析:解:(1)当时,汽车从甲地到乙地行驶了(小时),
需耗油(升)。
所以汽车以40千米∕时的速度匀速行驶,从甲地到乙地需耗油升 …4分.
(2)当汽车的行驶速度为千米∕时时,从甲地到乙地需行驶小时.
设耗油量为升,依题意,得
,.……7分
.
令 ,得 .
因为当时,,是减函数;当时,,是增函数,所以当时,取得最小值.
所以当汽车以千米∕时的速度行驶时,从甲地到乙地耗油最少,
最少为升。 12分
考点:利用导数求实际问题最值
科目:高中数学 来源: 题型:解答题
已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数,关于x的不等式的解集为,其中m为非零常数.设.
(1)求a的值;
(2)如何取值时,函数存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a≤0时,求f(x)的单调区间。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明对一切x∈(0,+∞),都有lnx>-成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲线y=f(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)e-x,求g(x)的极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com